International Journal on Information Sciences and Computing, Vol. 6 No. 1 January 2012 25

IMPROVING ARCHITECTURE LEVEL PERFORMANCE OF WEB APPLICATION
BASED ON MIDDLEWARE TECHNOLOGY

Mani K.
Lecturer, Dhanalaksmi Srinivasan College of Engineering and Technology, Mamallapuram.
ABSTRACT

A web application is a software system that contains the computing and networking technologies required for use through
web browsers on the Internet Web application. The fundamental feature of web applications is that its behavior is specified
by the interaction between the environment and the system. One of the major platforms to build web applications is
J2EE based on the MVC model such as Struts Framework. Struts framework based on MVC has brought the best code
reuse and the legible code structure in entire system by far, but it has some problems such as complicated program,
high coupling among layers and hard maintenance because its model part adopts JDBC to connect databases directly.
In this paper we propose middleware technology such as Struts2 based on MVC2, Spring and Hibernate Frameworks
which is the kernel and key to the simplify the software development, improve the software performance and quickly
construct the Web Application of the good expansibility, maintainability. This Framework is analyzed on designing
E-Commerce System.

Keywords: Middleware, MVC2, Struts2, Spring, Hibernate

I. INTRODUCTION

A. Background

In this paper, we examine a family of applications
that are frequently referred to as web applications. Web
applications play a crucial role in many organizations -
to mention only systems for accounting, online
shopping, securities trading, and flight reservations as
examples. Business data objects are transactionally
accessed by the enterprise application, and their
persistent state is stored in one or more transactional
data stores, for instance, relational database
management systems. Most applications rely on
underlying services that are commonly referred to as
middleware. Middleware services can be regarded as
an intermediate layer between applications and
operating systems and typically handle distribution,
heterogeneity, and transaction management for
enterprise applications. Ideally, all infrastructure
functionality is implemented as part of the underlying
middleware, which is accessed by the Web application
through standardized application programming
interfaces. The use of middleware allows application
developers to focus on the business logic of their web
application.

B. Focus

In data-intensive applications, large numbers of
business data objects are managed and accessed.
Thus, efficient data management mechanisms have to

be employed to access, load, store, synchronize, copy,
efc. data objects in a scalable manner. In this paper,
we take a middleware-centric view of data-intensive,
object-oriented, multi-tiered web applications. In
particular, we focus on two aspects: distribution and
data management.

C. Problem Statement

Unfortunately, software architects and application
developers experience two severe problems in practice:

Problem 1: With existing middleware, it is difficult
fo build web applications with custom distributed
structures.

Typically, only a small set of standard structures
is well supported by current middleware. More complex,
application-specific distributed structures are either not
supported or lead to significant performance problems
or restrict full middleware services to a subset of
distributed components only. To create efficient, custom
distributed structures, application developers often have
to implement typical middleware functionality (e.g.,
object-oriented access to data objects, transaction
management, and caching) as part of their application
code. This is a severe problem because implementing
middleware functionality is a complex, costly, and
time-consuming task that diverts application developers
from the business logic.

26 International Journal on Information Sciences and Computing, Vol. 6 No. 1 January 2012

Problem 2: With existing middleware, it is difficult
fo adapt the distributed structure of an existing web
application to meet new requirements.

Traditionally, the distribution of web applications
is considered a high-level, architectural concern.
Decisions on distribution have to be made at an early
design stage of a development project and are hard to
change later on. Changing an existing distributed
structure often requires major re-design and/or
re-implementation of large parts of the web application.
This is not only costly. in the worst case, this prevents
organizations from quickly responding to changes.

D. Objectives

The first objective is thorough analysis will help
software architects and application developers to
understand what kind of problems they are facing and,
in particular, why (and in which context) these problems
occur.

The second objective is to develop concepts for
an enterprise application middleware that

(@) explicitly supports custom distributed structures
and

(b) also allows to easily adapting them to new
requirements during the life cycle of an enterprise
application.

The concepts can serve as a basis for developing
new web application middleware as well as for
extending existing middleware products and standards.

The first objective is an intermediate step on the
way to achieving the second one as our main objective.

E. Approach

To address our second objective, we present our
Struts2 based on MVC2, Spring and Hibernate
Frameworks which realizes all of our requirements. The
architecture defines principles of a middleware
framework that explicitly supports custom and
adaptable distributed process frameworks. This
architecture relies on a network of object manager
components that collectively provide data management
services to Web applications. One of the main
advantages of this architecture is that the underlying
distributed structure of a web application can be
defined and adapted through (re)configuration without
having to re-design the application. This gives

developers more flexibility in constructing and
customers more flexibility in deploying and adapting
their enterprise applications.

F. Contributions

1. The identification of requirements for Web
application middleware to support custom and
adaptable process frameworks along with an
analysis why current middleware does not fulfill
these requirements, and

2. The Struts2, Spring and Hibernate Frameworks
which comprises concepts for web application
middleware to support custom and adaptable
process frameworks. In addition to the
architecture itself, proof-of-concept
implementations are provided.

G. Paper Outline
This paper is structured as follows:

Section 1 (the current section) provides a brief
overview of the background, objectives, approach, and
structure of the paper. In section 2, motivates the need
for custom and adaptable process frameworks,
identifies key requirements for such frameworks, and
explains why existing middleware does not fulfill these
requirements. In Section 3, we present our Middleware
Technology like Struts 2, Spring and Hibernate
Architecture for custom and adaptable process
frameworks. Section 4 is explaining the
Proof-of-Concept Implementation. We demonstrate an
example web application with an adaptable custom
framework, analyze performance aspects for typical
scenarios, and compare our solution to an application
based on object middleware. Section 5 gives a
conclusion of our paper.

Il. IDENTIFYING LIMITATIONS OF EXISTING
MIDDLEWARE

1. No custom process frameworks.

Application developers restrict themselves to a
limited subset of frameworks adequately supported by
their middleware.

2. Development of a cross-process data
management mechanism.

Application developers implement a full-fledged
cross-process data management mechanism as part of
their application code. Such solutions tend to become
very complex since application developers have to deal

Mani : Improving Architecture Level Performance of Web Application ... 27

with many aspects that are generally regarded as
infrastructure issues, for instance:

e client side caching of objects,

e managing identity of objects on the client
side

e integration of cached data and client access
operations into the server side transaction
management,

Most application developers want to focus on
business logic and are not prepared to handle these
infrastructure issues, which should be part of the
middleware. Even with skilled developers, this approach
is costly, error-prone, and time-consuming, and thus a
risk for many projects.

3. Relational Persistence for JAVA

Working with both Object-Oriented software and
Relational Database is complicated task with JDBC
because there is mismatch between how data is
represented in objects versus relational database. So
with JDBC, developer has to write code to map an
object model's data representation to a relational data
model and its corresponding database schema.

4. Support for Query Language

JDBC supports only native Structured Query
Language (SQL). Developer has to find out the efficient
way to access database, i.e. to select effective query
from a number of queries to perform same task.
Hibernate provides a powerful query language
Hibernate Query Language (independent from type of
database) that is expressed in a familiar SQL like
syntax and includes full support for polymorphic
queries.

5. Database Dependent Code

Application using JDBC to handle persistent data
having database specific code in large amount. The
code written to map table data to application objects
and vice versa is actually to map table fields to object
properties. As table changed or database changed then
it's essential to change object structure as well as to
change code written to map table-to-object/
object-to-table.

6. Optimize Performance

Caching is retention of data, usually in application
to reduce disk access. Hibernate, with Transparent
Persistence, cache is set to application work space.

Relational tuples are moved to this cache as a result
of query. It improves performance if client application
reads same data many times for same write. Automatic
Transparent Persistence allows the developer to
concentrate more on business logic rather than this
application code. With JDBC, caching is maintained by
hand-coding.

lll. PROPOSED MIDDLEWARE TECHNOLOGY
A. MVC2 Architecture

1
(Controller) :
Servlet \
I
I
|

Jd3ISMoudg

Enterprise Servers/

Application Server Data Sources

Fig. 1. JSP Model 2 architecture

The Model 2 (MVC) architecture is a hybrid
approach for serving dynamic content, since it
combines the use of both serviets and JSP. It takes
advantage of the predominant strengths of both
technologies, using JSP to generate the presentation
layer and servlets to perform process-intensive tasks.

In the figure1, the servlet acts as the controller
and is in charge of the request processing and the
creation of any beans or objects used by the JSP, as
well as deciding, depending on the user’s actions,
which JSP page to forward the request . Note
particularly that there is no processing logic within the
JSP page itself; it is simply responsible for retrieving
any objects or beans that may have been previously
created by the servlet, and extracting the dynamic
content from that servlet for insertion within static
templates. This approach typically results in the
cleanest separation of presentation from content,
leading to clear delineation of the roles and
responsibilities of the developers and page designers
on your programming team.

B. Struts2 Framework based on MVC2

Struts2 is an open-source web application
framework being developed in Jakarta Project. Struts
is also a set of cooperating classes, servlets, and JSP

28 International Journal on Information Sciences and Computing, Vol. 6 No. 1 January 2012

tags that make up a reusable MVC 2 design. This
definition implies that Struts is a framework, rather than
a library, but Struts also contains an extensive tag
library and utility classes that work independently of the
framework. Struts uses the JSP/Serviet technology
following the MVC model stated above. Struts
combines Java servlets, Java Server Pages (JSP),
custom tags, and message resources into a unified
framework and saves the developer the time of coding
an entire MVC model, a considerable task indeed.

The Mode/ represent the enterprise
information/data of the application. Anything that an
application persists becomes a part of model. It also
defines the manner of accessing such data and the
business logic for data manipulation. In struts2 the
model is implemented by the Action Component. It can
be EJB, Java Data Objects (JDO) pattern.

Controller Model

setXxx()

Y

execute()

=
Q
=
.
=
)
<
[3}
=
©
Q
2
o

T
4]
ie]
Q.
[0}
o
9
S

[=

Action

% View

9gtXxx()
JSP >

P

A

Fig. 2. Struts2 Framework Architecture

The View is simply a JSP file. There is no flow
logic, no business logic, and no model information --
just tags. Tags are one of the things that make Struts
unique compared to other frameworks like Velocity.
Separate presentation logic from business and control
logic.

All user interaction between the view and the
model is managed by the Controller. All user requests
to an MVC application flow through the controller. The
controller intercepts such requests from View and
passes it to the Model for appropriate action. The
controller does not include any business logic. In
struts2 the role of the controller is played by the Filter
Dispatcher. This is a Servlet filter that examines each
incoming request to determine the Action that will
handle the request.

C. Spring Framework

Spring ORM Spring WEB
p Web Application .

. Hibernate support Context Multipart Spring Web
Spring AOP IBats support Resol b utilii MVC
source-level JDO support esolver web utilities Web MVC

meta data Framework

AOP Spring DAO Spring Context Web Views
infrastructure Transactiong Application context JSP/Velocity

Infrastructure Ul support Validation PDF/Export
JOBC support JNDL EJB support
DAO support and remodelling Mail

Spring Core
Supporting utilies

Bean container

Fig. 3. Spring Framework Architecture

The Spring framework is a layered architecture
Consisting of seven well-defined modules. Each module
can exist individually or unite each other. The Spring
modules are built on top of the core container, which
defines how beans are created, configured, and
managed, as shown in Figure 3. The main component
of the core container is Bean Factory, which is an
implementation of the Factory pattern. Bean Factory
applies the Inversion of Control (IOC) pattern to
separate an application’s configuration and dependency
specification from the actual application code.

This framework gives the programmers new
patterns, so they can concentrate on the most
important things in the project. Spring Framework can
give us everything to build the corporate application
and simultaneously gives us the possibility to use only
some elements. We can differentiate one part that can
quick integrate some other parts, this is lIoC container.
Besides [0C container there is another important
component, that are the elements running inside the
container called Beans. Beans are classes that are
consistent with the JavaBeans specification. Any
objects can be Beans in the Spring Framework. They
don‘ t have to implement any interface and enlarge any
class. The loC container enables defining relations
between Beans. Those relations are use when one
Bean uses the other Bean to function right. loC
container is a pattern that is realized by dependency
injection and placing the elements in the special
container. That container can configure and match all
dependences and objects before sharing it to the user.
The 1oC container shares two dependency injection
methods:

e setter injection
e constructor injection

Mani : Improving Architecture Level Performance of Web Application ... 29

The main advantages of the Spring Framework are:

e integrating the existing solutions

e choice of suitable modules, only that which
we need

e non invasion, the written code doesn’t
depend on the Spring Framework

In the questionnaire application system Spring
Framework is an integrator between other system
modules. His main role is to join other parts in one
piece with use of Java Enterprise Edition, Hibernate
and Struts.

D. Hibernate Framework Based on ORM

Working with both the object-oriented software
and the relational database is a complicated task with
Java Database Connectivity (JDBC) because there is
mismatch between how data is represented in objects
versus relational database. So with JDBC, developers
have to write pure the Structured Query Language
(SQL) statements to map an object model's data
representation to a relational data model and its
corresponding database schema.

Hibernate is a flexible and powerful
Object-Relational Mapping (ORM) solution to map Java
classes to database tables. It is a powerful, high
performance object-relational persistence and query
service. Hibernate allows developers to express queries
in its own portable SQL extension (Hibernate Query
Language (HQL), as well as in native SQL, or with an
object-oriented criteria and example Application
Programming Interface (API). Hibernate itself takes care
of this mapping using XML files so developers don’t
need to write code for this.

Hibernate is an open source and it is free to use
for both development and production deployments,
which is a bridge between Java application and
relational database and takes charge of mapping
between Java objects and relational data. The inside
of Hibernate packs the operation of accessing database
by JDBC, which provides APl of object-oriented
database access to upper layer application. So
developers can use the object programming thought to
operate database sufficiently, caring for the bottom
database structure unnecessarily.

Hibernate relieves the developer from 95 percent
of common data persistence related programming

Application
Persistent objects |:
Hibernate
hibernate .
properties XML Mapping
Database

Fig. 4. Hibernate Architecture

tasks, compared to manual coding with SQL and the
JDBC API. And it can integrate various Web server or
application server, and nearly support all popular
databases server.

IV. PROOF OF IMPLEMENTATION

This paper uses the example of a online
bookstore dynamic E-commerce system to illustrate the
design and implementation process. The system is
divided into the following four functional modules:
merchandise query, shopping management, order form
management, after service, electron payment,
administrators, user , merchandise, discount , content
and advertisement management and so on.

In this paper, Bookstore management will be
used as an example to tell how to realize by Struts2,
Spring and Hibernate. This module is realized by
three-tiered: Presentation tier, Middleware tier
(Business Logic/Logic Tier) and Data tier as Figure 5.

A. Presentation Tier

The Bookshop manager can modify the property
of the merchandise such as name, description, price,
num and so on through the browser. The Jsp pages
in presentation tier collect these data, and connect with
the middle tier by the controller, and then the middle
tier will connect with the data tier. At last, the data
returned from the middle tier will be displayed by the
JSP pages by using the Struts Taglibs.

B. Middleware Tier

This tier can be divide into four parts, that are
web tier, service tier (business logic tier), DAO tier(Data
Access Object) and PO tier as the followings:

30 International Journal on Information Sciences and Computing, Vol. 6 No. 1 January 2012

Bookshopping manager

A
Update Requset

v
Validate,collect and display
business data:Jsp,Struts T aglip

Tier A

Presentation

A4

find Update Action and Update
Web Tier Action Form by Action Servlet of
Struts then execute

A

A\ 4
Realize Business Logic (IService.
java and Service Impl.Java)
A middleware

Tier

Service Tier

A\ 4
Data Access Object(ID ao.JAva.
Daolmpi.java)

DAO Tier

A

v
Get object by ORM from data base

A

PO Tier

A 4

Update or get data from the
data base

Data Tier

Fig. 5. Multi-tier Architecture for E-Commerce
System

Web tier: the Controller of Struts is with
responsibility

for the data exchange between presentation tier
and business logic tier, and it transfers the business
logic tier bean to deal with the merchandise
information, then it transfers the returned data to the
presentation tier to display.

Service tier (business logic tier): it realizes the
business logic, and handles the merchandise
information exchange between DAO component and
Web ftier.

DAO tier (Data Access Object): it encapsulates
the functions of merchandise data query, modification,
add and deletion. And it handles the merchandise
information exchange between Service tier and PO tier.

PO tier (persistent object tier)the relational
database table which stores merchandise information
are mapped to data merchandise objects by the
object/relational mapping tool of the Hibernate, then the
developer can operate the database table of
merchandise as the merchandise object.

C. Data Tier

In this paper, MSSQL server2000 is adopted as
Database Servers in where information is stored and
retrieved. This tier keeps data neutral and independent
from application servers or business logic. Giving data
its own tier also improves scalability and performance.

In this integrate pattern, whenever the user send
the request from the interface to the server, the request
will be sent to the ActionServlet of Struts, and then
ActionServlet will send it to the Bean of Spring, in the
case of which, the business objects can be highly
configurable with the help of I0C Container. It means
that now it is possible to use the Hibernate objects as
Spring Beans to deal with the data between application
and database, thus there is no need for the Application
to depend on the low-level JDBC details like managing
connection, dealing with statements and result sets. By
Using Hibernate, the access of database becomes
simply and object-oriented.

Struts2 framework is a classical implementation
of MVC architecture. Hibernate is a powerful technology
for persisting data, and it enables Application to access
data from any database in a platform-independent
manner. Spring is a dependency injection framework
that supports I0C. The beauty of Spring is that it can
integrate well with most of the prevailing popular
technologies, thus integrate Struts, Spring and
Hibernate is a very perfect pattern.

V. CONCLUSION

In this paper We developed the MVC2
architecture, which consists of concepts for web
application middleware Struts2, Spring and Hibernate
that supports custom and adaptable process . We
discussed details of the architecture, including data
distribution, decoupling through configuration. Our
architecture addresses all requirements for web
application middleware we previously identified. With
our architecture, the distributed structure of a Web
application can be defined and adapted through
(re)configuration ~ and without affecting its
implementation. This gives developers more flexibility
in constructing and customers more flexibility in
deploying their web applications.

As proof-of-concept, we implemented a
middleware Struts2, Spring and Hibernate framework
based on the concepts of MVC2 architecture. The

Mani : Improving Architecture Level Performance of Web Application ... 31

middleware framework serves as an example of how
the MVC2 architecture fit together and map to a
concrete middleware implementation. We implemented
a sample Web application on top of our framework and
demonstrated that constructing custom process and
then adapting them in several evolutionary steps later
on is straightforward.

REFERENCES

[1] Mengjian Chen “A Dynamic E-commerce System
Based on Middleware Technology”. 2009 International
Conference on Networks Security, Wireless
Communications and Trusted Computing.

[2] YANG Dezhi, ZHU Shifeng, ZHOU Shenglu, WANG
Jiechen, CAl Anjuan. “The Design and Implement of
Web MIS of Students Based on Servlet+JDBC” 2009
First International Workshop on Education Technology
and Computer Science.

[38] R. Elmasri and S. Navathe. Fundamentals of Database
Systems. 3rd Edition. Addison- Wesley, 2000.

[4] Model-view-controller,Accessed from: http: // www.
roseindia.net/struts/struts2/

[5] Introduction to the Spring framework, Accessed from:
http://www.ibm.com/developerworks/web/library/spring

[6] HIBERNATE - Relational Persistence for Idiomatic
Java, Accessed from: http://
www.Hibernate.org/hib_docs/
v3/reference/en/html/preface.html

[7] 1, Singh, B.Steams, , M. Johnson, and E, Team,
Designing Enterprise Applications with the J2EE
Platform, Addison-Wesley, 2002.

K.Mani had done B.E(Computer

Science and Engineering) in

Christian College of Engineering

and Technology, Oddanchatram-

X Dindigul. He is studying M.E

\ (Computer Science and

Engineering) in Ganadipathy
Tulsi's Jain Engineering College,

Vellore. He is worked as a Lecturer of the department

of “Computer Science and Engineering” in VelTech

MultiTech Engineering College, Avadi-Chennai.

v

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

